
ND Genotypes Documentation
Release 7.x-2.0-beta1

Lacey-Anne Sanderson et al., University of Saskatchewan, Pulse Bioinformatics

May 27, 2022

Resources:

1 Features 3
1.1 Genotype Matrix . 4
1.2 Marker/Variant Genotype Summary Fields . 5
1.3 Marker/Variant Flanking Sequence Field . 6
1.4 Genotype Matrix Quick Link . 8

2 Installation 11
2.1 Quickstart . 11
2.2 Dependencies . 12
2.3 Installation . 12

3 Configuration 15
3.1 Set Controlled Vocabulary Terms . 15
3.2 Add Genotype Summaries to Variant/Marker Pages . 16
3.3 Set Preferred Allele Colours (Optional) . 19

4 Use Cases 23
4.1 Find a variant in a trait-implicated region . 23

5 Data Storage 31
5.1 Chado Schema and Extensions . 31
5.2 Example Database . 34

6 Contributing 39
6.1 Automated Testing . 39
6.2 Manual Testing (Demonstration) . 39

i

ii

ND Genotypes Documentation, Release 7.x-2.0-beta1

This module provides support and visualization of genotypic data stored in a modified GMOD Chado schema. The 3.x
branch of this module represents a shift towards support for large scale genotypic datasets through backwards compat-
ible improvements to the Chado schema including a new gathering table for genotypes (genotype_call) modelled after
the chado phenotype table, optimized queries and well-choosen indexes.

Note: Easy Data loading is available via the Genotypes Loader which supports VCF files!

Resources: 1

https://github.com/UofS-Pulse-Binfo/genotypes_loader

ND Genotypes Documentation, Release 7.x-2.0-beta1

2 Resources:

CHAPTER 1

Features

• Extensive configuration allowing for flexiblity in ontology terms used, as well as, colours and wording used in
visualizations.

• Multiple Tripal 3 Fields which provide flexible, configurable summaries of genotypic data.

– Marker/Variant Genotype Summary: a pie chart showing the ratio of alleles recorded per marker.

– Marker/Variant Flanking Sequence: a FASTA record showing flanking sequence with all known vari-
ants indicated via IUPAC codes (useful in marker design).

– Marker List: provides links to the markers assaying a given variant.

– Genotype Matrix Quick Link: provides a quick link to a pre-filtered genotype matrix. How it is filtered is dependent on the page it is on:

* On Marker/Variant pages: restricted to specific variant

* On Germplasm pages: germplasm is pre-selected

* On Project pages: project is pre-selected if genus is a property of the project.

• Genotype Matrix search allowing users to extract genotypes for a user-defined set of germplasm. Includes
filtering by marker/variant type, variant location, and pairwise polymorphism. Filtering by quality is coming
soon.

• Integration of all fields with Tripal 3 web services allowing you to share your genotypic data with other groups.

Note: If ND Genotypes fields are not automatically attached to the genetic marker and sequence variant content
types, go to the “Manage Fields” page for each and click “Find new fields”. Also, go to the “Manage Display” page
and ensure they are not hidden.

3

ND Genotypes Documentation, Release 7.x-2.0-beta1

1.1 Genotype Matrix

This module provides genotype search functionality that allows users to select which germplasm and variants they are
interested in and be shown a colour-coded variant by germplasm table which can be further filtered by marker/variant
type and to only show polymorphic variants (pairwise comparison choosen by the user). After filtering to their desired
dataset, the user can download the table as a tab-delimited file.

As you can see in the following screenshot, the user can enter any number of germplasm depending upon their needs.
Additionally, the filter criteria is well-defined including helpful descriptions under each one.

This is the matrix resulting from the above filter criteria. As you can see, each column represents one of the chosen
germplasm and each row represents a specific variant.

4 Chapter 1. Features

ND Genotypes Documentation, Release 7.x-2.0-beta1

1.2 Marker/Variant Genotype Summary Fields

This field adds a summary pie chart figure to marker or variant pages. It shows the ratio of alleles saved for the given
marker/variant and can be used to give the researcher an idea of what alleles to expect when using the marker, as well
as, how rare a given result might be.

1.2. Marker/Variant Genotype Summary Fields 5

ND Genotypes Documentation, Release 7.x-2.0-beta1

Both the title and description of the figure legend can be configured by going to Administration » Structure » Tripal
Content Types » [Variant/Marker] » Manage Display and clicking on the gear beside the genotype summary field.

Warning: Make sure to click “Update” in the blue settings pane; as well as, “Save” at the bottom of the page.

1.3 Marker/Variant Flanking Sequence Field

This field adds a FASTA record showing the flanking sequence for the current marker variant. It also highlights the
variants in the flanking region with their IUPAC codes. This field seamlessly handles variants with multiple locations
by showing each one with the first one by rank expanded.

6 Chapter 1. Features

ND Genotypes Documentation, Release 7.x-2.0-beta1

Both the title and description of the figure legend can be configured by going to Administration » Structure » Tripal
Content Types » [Variant/Marker] » Manage Display and clicking on the gear beside the genotype summary field.

1.3. Marker/Variant Flanking Sequence Field 7

ND Genotypes Documentation, Release 7.x-2.0-beta1

Warning: Make sure to click “Update” in the blue settings pane; as well as, “Save” at the bottom of the page.

1.4 Genotype Matrix Quick Link

This field provides a quick link to the genotype matrix from project, germplasm, marker and variant pages. It pre-filters
the genotype matrix to data relating to the page it’s on. For example, on a germplasm page (any content type storing
data in the Chado stock table) the user will be taken to a genotype matrix of the correct genus already displaying
genotypes for the germplasm they were looking at.

The link is consistent across content types and does not need to be configured. It automatically detects the type of
content it is on and adds information to link to pre-filter the genotype matrix accordingly.

1.4.1 Project Pages

Project pages are any Tripal Content which stores it’s base data in the Chado project table including “Study”, “Genome
Project” and “Project” default Tripal Content Types. The genus is determined based on a Chado property with cvterm
TAXRANK:genus and the genotype matrix link with simply not appear on content without this property. The unique
project identifier is used to pre-filter the genotype matrix to data from the project the researcher was viewing. Once
clicking through to the genotype matrix, the researcher still needs to select which germplasm they want to see the data
for.

8 Chapter 1. Features

ND Genotypes Documentation, Release 7.x-2.0-beta1

1.4.2 Variant Pages

Variant pages are any Tripal Content which stores it’s base data in the Chado Feature table and are of type
SO:sequence_variant including the default Tripal Content Type “Sequence Variant”. The genus is determined based
on the associated organism and the variant name is used to pre-filter the genotype matrix to data specific to the variant
being viewed by the researcher. Once clicking through to the genotype matrix, the researcher still needs to select
which germplasm they want to see the data for.

1.4.3 Genetic Marker Pages

Genetic Marker pages are any Tripal Content which stores it’s base data in the Chado Feature table and are of type
SO:genetic_marker including the default Tripal Content Type “Genetic Marker”. The genus is determined based on
the associated organism. The Genotype Matrix will be pre-filtered to any sequence variants related to the current
genetic marker. Once clicking through to the genotype matrix, the researcher still needs to select which germplasm
they want to see the data for.

1.4.4 Germplasm Pages

Germplasm pages are any Tripal Content which stores it base data in the Chado stock table including “Germplasm
Accession” and “Cultivar (germplasm Variety)” and “Generated Germplasm (breeding Cross)” default Tripal Content
Types. The genus is determined based on the associated organism and the unique germplasm identifier is used to
ensure the pre-filtered matrix is showing the correct germplasm to the user. This provides a great way for researchers
to access the genotypic data quickly and intuitively from the germplasm page.

The following screenshots are meant to visually summarize the features. For more detail, please click on one of the
features above.

1.4. Genotype Matrix Quick Link 9

ND Genotypes Documentation, Release 7.x-2.0-beta1

10 Chapter 1. Features

CHAPTER 2

Installation

2.1 Quickstart

This installation assumes you have Tripal 3.x and PostgreSQL 9.3+.

1. Install the following dependencies: Drupal Libraries API, Tripal D3.js, Tripal Donwload API.

drush pm-download libraries
drush pm-enable libraries -y
cd [drupal root]/sites/all/modules
git clone https://github.com/tripal/tripald3
git clone https://github.com/tripal/trpdownload_api
cd [drupal root]/sites/all/libraries
mkdir d3 && cd d3
wget https://github.com/d3/d3/releases/download/v3.5.17/d3.zip
unzip d3.zip
drush pm-enable trpdownload_api tripald3 -y

2. Install this module as you would any Drupal module.

cd [drupal root]/sites/all/modules
git clone https://github.com/UofS-Pulse-Binfo/nd_genotypes.git
drush en nd_genotypes -y

3. Load data using the genotype loader. Since the Genotype loader is not yet released, we highly suggest test
loading each dataset on a development site.

4. Configure this module by going to Administration » Tripal » Extensions » Natural Diversity Genotypes » Set-
tings.

5. Once data is available make sure to sync it (Administration » Tripal » Extensions » Natural Diversity Genotypes
» Sync)

Note: If you do not have data and you want to try the module out, you can use the Tripal Test Suite Database Seeder

11

https://github.com/UofS-Pulse-Binfo/genotypes_loader

ND Genotypes Documentation, Release 7.x-2.0-beta1

provided with this module. See Manual Testing (Demonstration).

• You can access the genotype matrix at [your drupal site]/chado/genotype/[genus].

• You should see a “Genotypes” and updated “Sequences” pane on Genetic Marker and Variant pages.

– You may need to go to Administration > Structure > Tripal Content Types > Genetic Marker > Manage
Fields and click “Find new fields”.

– Then go to “Manage Display” and enable the field by dragging it into the display area.

Note: If ND Genotypes fields are not automatically attached to the genetic marker and sequence variant content
types, go to the “Manage Fields” page for each and click “Find new fields”. Also, go to the “Manage Display” page
and ensure they are not hidden.

2.2 Dependencies

1. Tripal 3.x

2. Drupal Libraries API

3. Tripal Download API

4. Tripal D3.js

5. PostgreSQL 9.3 (9.4+ recommended; tested with 11.3)

2.3 Installation

1. Install the following dependencies: Drupal Libraries API, Tripal D3.js, Tripal Donwload API.

• First we install the Drupal Libraries API which is required for Tripal D3.

drush pm-download libraries
drush pm-enable libraries -y

• Next we grab the latest version of the remaining dependencies from Github.

cd [drupal root]/sites/all/modules
git clone https://github.com/tripal/tripald3
git clone https://github.com/tripal/trpdownload_api

• The charts for the module are drawn using D3.js v3 . As such we need to download it and place
it in our libraries folder.

cd [drupal root]/sites/all/libraries
mkdir d3 && cd d3
wget https://github.com/d3/d3/releases/download/v3.5.17/d3.zip
unzip d3.zip

• Finally we can enable the last of our dependencies.

drush pm-enable trpdownload_api tripald3 -y

12 Chapter 2. Installation

https://drupal.org/project/tripal
https://www.drupal.org/project/libraries
https://github.com/tripal/trpdownload_api
https://github.com/tripal/tripald3

ND Genotypes Documentation, Release 7.x-2.0-beta1

2. Install this module as you would any Drupal module.

cd [drupal root]/sites/all/modules
git clone https://github.com/UofS-Pulse-Binfo/nd_genotypes.git
drush en nd_genotypes -y

2.3. Installation 13

ND Genotypes Documentation, Release 7.x-2.0-beta1

14 Chapter 2. Installation

CHAPTER 3

Configuration

3.1 Set Controlled Vocabulary Terms

1. Navigate to Administration » Tripal » Extensions » Natural Diversity Genotypes » Settings

2. Under “Controlled Vocabulary Terms” you will see a number of drop-downs. Simply set these to the terms you
use in your chado database. This allows ND Genotypes to better support the flexibility of Chado and allows you
to use the terms most fitting for your data.

15

ND Genotypes Documentation, Release 7.x-2.0-beta1

3. Click “Save Terms” once you’ve set them all appropriately.

3.2 Add Genotype Summaries to Variant/Marker Pages

1. Navigate to Administration » Structure » Tripal Content Types » [Variant/Marker] » Manage Fields

2. Scroll down to “Add a new field”, enter a label and select “Genotype Summary” from the first drop-down.

16 Chapter 3. Configuration

ND Genotypes Documentation, Release 7.x-2.0-beta1

3. Choose a term for the field or create a local one

3.2. Add Genotype Summaries to Variant/Marker Pages 17

ND Genotypes Documentation, Release 7.x-2.0-beta1

4. Navigate to “Manage Display” for the same content type and ensure the field you just created is placed where
you would like it to be.

Warning: Ensure that the field is not in the “Disabled” section under “Manage Display”; otherwise, it will not
appear on the page.

5. You can also configure the figure legend. On the “Manage Display” page, click the gear icon at the far right of
the Genotype Summary field.

18 Chapter 3. Configuration

ND Genotypes Documentation, Release 7.x-2.0-beta1

Warning: Make sure to click “Update” in the blue settings pane; as well as, “Save” at the bottom of the page.

3.3 Set Preferred Allele Colours (Optional)

You can also change the colours used for the genotype matrix and summary charts:

1. Navigate to Administration » Tripal » Extensions » Natural Diversity Genotypes » Settings

2. Under “Allele Colours” enter the HEX code for the colours you would like to use. Once you save the colours,
you will see your choice demonstrated in front of the allele.

3.3. Set Preferred Allele Colours (Optional) 19

ND Genotypes Documentation, Release 7.x-2.0-beta1

3. You can also indicate a collection of colours you would like to be used for alleles that don’t fall into the typical
SNP categories such as MNPs.

20 Chapter 3. Configuration

ND Genotypes Documentation, Release 7.x-2.0-beta1

3.3. Set Preferred Allele Colours (Optional) 21

ND Genotypes Documentation, Release 7.x-2.0-beta1

22 Chapter 3. Configuration

CHAPTER 4

Use Cases

The following tutorials walk researchers through how these tools can be used to answer common research questions.

4.1 Find a variant in a trait-implicated region

Research Question:

Through other analysis you have a region of the genome which likely contributes to a specific phenotype for your trait
of interest. Now you would like to find a causative or at least correlated sequence variant. For this purpose you know
at least two germplasm with differing phenotypes which you have genotypic data available for.

Fictional Example:

• Trait: FAIRness

• Region of interest: non:150-300

• Germplasm with FAIRness: placeat libero cupiditate et

• Germplasm without FAIRness: omnis fuga molestiae et

Data:

This example uses simulated data for the fictional species Tripalus databasica. You can generate similar using the
Tripal Test Suite as described here: Manual Testing (Demonstration). You can also use your own data by importing it
into your Tripal site using the genotype loader.

4.1.1 Step #1: Find genotypic data for your reference germplasm

• Go to [yourtripalsite]/chado/genotype/[Genus] (e.g. http://localhost/
tripal-DEV/chado/genotype/Tripalus) to access the genotype matrix tool for the genus of
the germplasm you are interested in.

23

https://github.com/UofS-Pulse-Binfo/genotypes_loader

ND Genotypes Documentation, Release 7.x-2.0-beta1

• Enter the name of each germplasm you are interested in by typing it in the textfield labelled germplasm. Then
check the correct species is selected to the right of the textbox. To add more then one germplasm click the green
+ button.

• Each time you click the green + button or search, the genotypic data for the listed germplasm will be shown.

24 Chapter 4. Use Cases

ND Genotypes Documentation, Release 7.x-2.0-beta1

4.1.2 Step #2: Restrict the Sequence Variants to polymorphic between your
germplasm

• Underneath germplasm, there is a filter to restrict to polymorphic variants. This filter compares two germplasm
and only shows variants with different genotypic calls.

• For our example, we would select placeat libero cupiditate et in the first drop down and omnis
fuga molestiae et in the second drop-down to see only sequence variants with differing genotypes (i.e
polymorphic variants) between these two germplasm.

• Click Search to see the results.

4.1.3 Step #3: Restrict to you trait-implicated Region of the Genome.

• The second section of the filter criteria available for the genotype matrix allows you to enter the region of the
genome you are interested in. Once you click search, the genotype matrix will only show sequence variants

4.1. Find a variant in a trait-implicated region 25

ND Genotypes Documentation, Release 7.x-2.0-beta1

found in this region.

• In our example, the region of interest is non:150-300. To enter this we place non for the Sequence Name,
150 for the start position and 300 for the end position.

26 Chapter 4. Use Cases

ND Genotypes Documentation, Release 7.x-2.0-beta1

4.1. Find a variant in a trait-implicated region 27

ND Genotypes Documentation, Release 7.x-2.0-beta1

4.1.4 Step 4: (Optionally): Restrict to specific variants.

• Say further analysis shows that particular sequence variants in that region are more likely to contribute to your
phenotype of interest.

• You can enter the specific variant names by expanding the Additional Filter criteria section then
clicking Search.

28 Chapter 4. Use Cases

ND Genotypes Documentation, Release 7.x-2.0-beta1

4.1. Find a variant in a trait-implicated region 29

ND Genotypes Documentation, Release 7.x-2.0-beta1

30 Chapter 4. Use Cases

CHAPTER 5

Data Storage

Genotypic data is stored through use of a custom table (genotype_call) created by this module. This table provides
a centralized, relational table which pulls all the information for a given genotypic call (marker assay result on a
given germplasm for a specific project) together in a single record. It also supports flexible storage for all meta-
data associated with a genotype assay result through a PostgreSQL JSONB metadata column. We went with this
backwards compatible approach to make supporting large genotypic datasets more efficient then chado alone. For
more information on our schema and the reasons we went with this approach see our schema documentation.

Note: Easy Data loading is available via the Genotypes Loader which supports VCF files!

5.1 Chado Schema and Extensions

All of the tools provided by this module retrieve their data from two question-agnostic materialized views. This
provides a significant performance boost, as well as supports flexibility in the ways you can store your data.

There are currently two ways to store your genotypic data in Chado v1.3 with this module providing a third, more
efficient way. While this module only supports Method #2, it can easily support data stored using the other two
methods via custom queries that populate the materialized views with your data. You can see a comparison of the
various methods below which should make it clear why we’ve gone with the storage method we have. Furthermore, you
can see benchmarking for Method #2 here: https://github.com/UofS-Pulse-Binfo/nd_genotypes/wiki/Benchmarking.

31

https://github.com/UofS-Pulse-Binfo/genotypes_loader
https://github.com/UofS-Pulse-Binfo/nd_genotypes/wiki/Benchmarking

ND Genotypes Documentation, Release 7.x-2.0-beta1

5.1.1 Comparison of Methods

MethodName Cus-
tom
Tables

Supports
Meta-
data

#
Ta-
bles

Comments

1 ND
Exper-
iment

No Yes 14 Not suitable beyond 3 million genotype calls.

2 Geno-
type
Call

Yes Yes 10 Most efficient; although it touches the same number of tables as
Method #3 there are less records per genotype call

3 Stock
Geno-
type

No No 10 A good alternative if you don’t want to use custom tables but have
a lot of data. Similar efficiency to Method #2 but less support for
meta-data.

All three methods store Markers & Variants in the same way. For the purposes of this module, a variant is a
location on the genome where variation has been detected and has a type of SNP, MNP, Indel, etc. A marker then
indicates which method the genotype calls associated with it were determined by. For example, you may have a
variant on Chromosome 1 at position 45678 that you detected variation through two different methods. Each method
would be indicated as a marker and all the genotype calls detected by that method would be attached to the appropriate
marker and not directly to the variant. This has been determined necessary since the level of trust and how you interpret
any quality meta-data will depend on the method.

5.1.2 Method 1: The Chado Natural Diversity Experiment Tables.

This is the first method that was supported and the only method supported the for the 1.x versions of this module.

To try to give you an idea of the records needed we will consider a single line in a VCF file where there are only three
alleles and six stocks:

#
Records

Tables Example Explanation

2 feature “LcChr1p555”
and “Lc-
Chr1p555 GBS
Marker”

One each for variant and marker where the variant may already ex-
ist.

2 featureloc Chr1:554-555
for each.

Locate each of the variant and marker on the chromsome.

1 fea-
ture_relationship

“LcChr1p555
GBS Marker”
is_marker_of
“LcChr1p555”

Link the marker and variant.

6 genotype, fea-
ture_genotype

“AA”, “AC”,
“CC”

One genotype record per unique allele call. NOTE: the allele call
must be unique to the marker in order to be able to trace from
marker to stock. Thus there will be a record for “AA” for marker5
and a separate record for “AA” for marker9.

18 nd_experiment_genotype,
nd_experiment,
nd_experiment_stock

All Foreign
Keys

Three records per stock in order to link the stock to it’s allele
through through the natural diversity tables.

6 nd_experiment_projectAgain Foreign
Keys

One per nd_experiment to link it to the project. Note there will be
one nd_experiment per stock/marker combination.

32 Chapter 5. Data Storage

ND Genotypes Documentation, Release 7.x-2.0-beta1

Total: 35 records per line in a VCF with only 6 stocks and 3 alleles per variant.

Thus if your VCF file has 100,000 lines you will have to create 3,500,000 records across 12 tables to store it. Keep
in mind that number doesn’t include the records for your chromosomes or for your stocks since the first likely already
exists and the second is only entered once per file.

5.1.3 Method 2: Custom Genotype Call Table.

Now, lets consider the same example as in Method 1 (one VCF line with three alleles and six samples):

#
Records

Tables Example Explanation

2 feature “LcChr1p555” and “LcChr1p555 GBS
Marker”

One each for variant and marker where the variant
may already exist.

2 fea-
tureloc

Chr1:554-555 for each. Locate each of the variant and marker on the chrom-
some.

1 fea-
ture_relationship

“LcChr1p555 GBS Marker”
is_marker_of “LcChr1p555”

Link the marker and variant.

6 geno-
type_call

All Foreign Keys with the exception
of any quality information you want to
store in the meta-data column

This links the marker, variant, allele call, stock and
project all in one and stores any addition quality in-
formation in the meta-data column.

Total: 11 records per line in a VCF with only 6 stocks and 3 alleles per variant.

Notice how much more efficient this method is. This is because (1) most of the foreign key connections are taking
place in a single table (genotype_call) and (2) there now only needs to be a single record in the genotype table for
“AA” rather than one record per marker using the previous method. For further comparison, the same 100,000 line
VCF file would now only take 1,100,000 records to store not including the records for your chromosomes, which
already exist, those for your stocks, only 6 per file, and those for you alleles (genotype table), which likely already
exist. Furthermore, storing meta-data doesn’t increase the number of records like it would in the first method.

5.1.4 Method 3: via Stock Genotype Table.

Finally, lets consider the last method using the same example (one VCF line with three alleles and six samples):

5.1. Chado Schema and Extensions 33

ND Genotypes Documentation, Release 7.x-2.0-beta1

#
Records

Tables Example Explanation

2 feature “LcChr1p555” and
“LcChr1p555 GBS
Marker”

One each for variant and marker where the variant may already exist.

2
1

feature-
loc
fea-
ture_relationship

Chr1:554-555 for each.
“LcChr1p555 GBS
Marker” is_marker_of
“LcChr1p555”

Locate each of the variant and marker on the chromsome. Link the
marker and variant.

6 geno-
type,
fea-
ture_genotype

“AA”, “AC”, “CC” One genotype record per unique allele call. NOTE: the allele call
must be unique to the marker in order to be able to trace from marker
to stock. Thus there will be a record for “AA” for marker5 and a
separate record for “AA” for marker9.

6 stock_genotypeAll Foreign Keys Link each DNA stock to the allele detected using the assay. We are
only counting the linking records here since the stocks will only be
created once per file.

Total: 17 records per line in a VCF with only 6 stocks and 3 alleles per variant.

This is a good mid-range option that allows you to store genotypes efficiently without the use of any custom tables!
The trade-off is that there isn’t a good way to store meta-data related to the assay such as read depth. To complete the
comparison, the same 100,000 line VCF file would take 1,700,000 records to store not including the records for your
chromosomes, which already exist, those for your stocks, only 6 per file.

5.2 Example Database

The following queries endeavour to show how data used by this module is stored. This is a small peak into a production
database and while it’s not perfect (still containing some legacy terms, etc.) it is completely functional with the
nd_genotypes module.

5.2.1 Markers & Variants

The following queries show how markers and variants are stored. The types used for markers and variants can be
configured and more then one type can be used for each (e.g. you could use SNP, MNP, Indel types for variants).
While the example below shows multiple types for variants, in the future my personal database will be switched to
use the SO sequence_variant type for all variants to aid with consistent variant pages in Tripal 3. However, this is a
personal choice and both methods have their pro’s and cons.

psql=# SELECT f.*, cvt.name as type_name FROM chado.feature f LEFT JOIN chado.cvterm
→˓cvt ON cvt.cvterm_id=f.type_id WHERE f.name~'LcC09269p298';
feature_id | dbxref_id | organism_id | name |
→˓ uniquename | residues | seqlen | md5checksum | type_id | is_analysis |
→˓is_obsolete | timeaccessioned | timelastmodified | type_name
------------+-----------+-------------+---------------------------------------+-------
→˓------------------------+----------+--------+-------------+---------+-------------+-
→˓------------+----------------------------+----------------------------+-------------
→˓---

327991 | 2513464 | 4 | LcC09269p298 |
→˓LcC09269p298 | | 1 | | 796 | f
→˓ | f | 2011-07-29 16:08:43.515889 | 2011-07-29 16:08:43.515889 | SNP

372934 | 2649322 | 4 | LcC09269p298 454 Sequencing |
→˓LcC09269p298_454 | | 1 | | 3969 | f
→˓ | f | 2011-09-15 11:52:45.943205 | 2011-09-15 11:52:45.943205 |
→˓genetic_marker

(continues on next page)

34 Chapter 5. Data Storage

ND Genotypes Documentation, Release 7.x-2.0-beta1

(continued from previous page)

392501 | 3114923 | 4 | LcC09269p298 Lc1536 Golden Gate Assay |
→˓LcC09269p298-1_B_F_1890446698 | | 1 | | 3969 | f
→˓ | f | 2011-09-15 12:06:20.86547 | 2011-09-15 12:06:20.86547 |
→˓genetic_marker
(3 rows)

psql=# SELECT prop.*, cvt.name as type_name FROM chado.featureprop prop LEFT JOIN
→˓chado.cvterm cvt ON cvt.cvterm_id=prop.type_id WHERE prop.feature_id IN (327991,
→˓372934, 392501);
featureprop_id | feature_id | type_id | value | rank |
→˓type_name
----------------+------------+---------+----------------------------+------+----------
→˓-------------------

400633 | 327991 | 1512 | 91 bp | 0 | five_
→˓prime_flanking_region

400634 | 327991 | 1513 | 308 bp | 0 | three_
→˓prime_flanking_region

525105 | 372934 | 3966 | 454 Sequencing | 0 | marker_
→˓type

459336 | 392501 | 1891 | 0.909 | 0 | score
459337 | 392501 | 1870 | LcRedberry | 0 | source
459338 | 392501 | 3687 | 12/23/2010 | 0 | design_

→˓date
466357 | 392501 | 3709 | BOT | 0 | illumina_

→˓strand
466358 | 392501 | 3710 | BOT | 0 |

→˓reference_sequence_strand
781915 | 392501 | 3966 | Illumina Golden Gate Assay | 0 | marker_

→˓type
(9 rows)

psql=# SELECT t.* FROM chado.featureloc t WHERE t.feature_id IN (327991, 372934,
→˓392501);
featureloc_id | feature_id | srcfeature_id | fmin | is_fmin_partial | fmax
→˓| is_fmax_partial | strand | phase | residue_info | locgroup | rank
---------------+------------+---------------+-----------+-----------------+-----------
→˓+-----------------+--------+-------+--------------+----------+------

3897843 | 372934 | 295264 | 297 | f | 298
→˓| f | 0 | 0 | | 0 | 0

3711470 | 392501 | 295264 | 297 | f | 298
→˓| f | 0 | 0 | | 0 | 0

3260896 | 327991 | 295264 | 297 | f | 298
→˓| f | | | | 0 | 0

4562009 | 327991 | 3400411 | 250519947 | f | 250519948
→˓| f | -1 | | | 2 | 0

4562010 | 327991 | 3400411 | 250136623 | f | 250136624
→˓| f | -1 | | | 2 | 1

4562011 | 327991 | 3400407 | 501710 | f | 501711
→˓| f | -1 | | | 2 | 2

4628689 | 372934 | 3400411 | 250519947 | f | 250519948
→˓| f | -1 | | | 2 | 0

4628690 | 372934 | 3400411 | 250136623 | f | 250136624
→˓| f | -1 | | | 2 | 1

4628691 | 372934 | 3400407 | 501710 | f | 501711
→˓| f | -1 | | | 2 | 2
(9 rows)

5.2. Example Database 35

ND Genotypes Documentation, Release 7.x-2.0-beta1

psql=# SELECT t.*, cvt.name as type_name FROM chado.feature_relationship t LEFT JOIN
→˓chado.cvterm cvt ON cvt.cvterm_id=t.type_id WHERE t.subject_id IN (327991, 372934,
→˓392501);
feature_relationship_id | subject_id | object_id | type_id | value | rank | type_
→˓name
-------------------------+------------+-----------+---------+-------+------+----------
→˓----

2575387 | 372934 | 327991 | 3685 | | 0 | is_
→˓marker_of

2594954 | 392501 | 327991 | 3685 | | 0 | is_
→˓marker_of
(2 rows)

5.2.2 Genotypes

The preferred method of storing genotype calls is to use the new genotype_call table created by this module as it is
more efficient. As you can see below this results in each unique allele only being stored once in the genotype table with
the information of which allele was detected for a given marker/stock combination is recorded in the genotype_call
table. This method doesn’t use the feature_genotype table.

psql=# SELECT t.*, cvt.name as type_name FROM chado.feature_genotype t LEFT JOIN
→˓chado.cvterm cvt ON cvt.cvterm_id=t.cvterm_id WHERE t.feature_id IN (327991, 372934,
→˓ 392501);
feature_genotype_id | feature_id | genotype_id | chromosome_id | rank | cgroup |
→˓cvterm_id | type_name
---------------------+------------+-------------+---------------+------+--------+-----
→˓------+-----------
(0 rows)

psql=# SELECT * FROM chado.genotype_call WHERE variant_id=327991 LIMIT 10;
genotype_call_id | variant_id | marker_id | genotype_id | project_id | stock_id |
→˓meta_data
------------------+------------+-----------+-------------+------------+----------+----
→˓-------

158529 | 327991 | 372934 | 2625650 | 3 | 27907 |
158530 | 327991 | 372934 | 2625649 | 3 | 27908 |
158531 | 327991 | 372934 | 2625649 | 3 | 27911 |
324755 | 327991 | 372934 | 2625650 | 3 | 27916 |
324756 | 327991 | 372934 | 2625650 | 3 | 27917 |
616977 | 327991 | 392501 | 2625652 | 36 | 28283 |
618223 | 327991 | 392501 | 2625652 | 36 | 28284 |
619485 | 327991 | 392501 | 2625651 | 36 | 28285 |
620644 | 327991 | 392501 | 2625651 | 36 | 28286 |
621871 | 327991 | 392501 | 2625652 | 36 | 28287 |

(10 rows)

psql=# SELECT g.*, cvt.name as type_name FROM chado.genotype g LEFT JOIN chado.cvterm
→˓cvt ON cvt.cvterm_id=g.type_id;
genotype_id | name | uniquename | description | type_id | type_name

-------------+------+------------+-------------+---------+-----------
2625647 | A | A | A | 796 | SNP
2625648 | T | T | T | 796 | SNP
2625649 | C | C | C | 796 | SNP
2625650 | G | G | G | 796 | SNP
2625651 | GG | GG | GG | 796 | SNP

(continues on next page)

36 Chapter 5. Data Storage

ND Genotypes Documentation, Release 7.x-2.0-beta1

(continued from previous page)

2625652 | CC | CC | CC | 796 | SNP
2625653 | TT | TT | TT | 796 | SNP
2625654 | AA | AA | AA | 796 | SNP

(8 rows)

5.2.3 Germplasm/Stocks

The DNA source the marker assay was performed on is given a type of DNA with the original germplasm source of this
DNA having whichever term is appropriate. The important thing is that the DNA extraction and original germplasm
are related consistently through the stock_relationship table.

psql=# SELECT s.*, cvt.name as type_name FROM chado.stock s LEFT JOIN chado.cvterm
→˓cvt ON cvt.cvterm_id=s.type_id WHERE s.stock_id IN (58, 27907);
stock_id | dbxref_id | organism_id | name

→˓| uniquename | description | type_id | is_obsolete |
→˓type_name
----------+-----------+-------------+---+-
→˓---------------------------------------+-------------+---------+-------------+------
→˓------

58 | 1901662 | 4 | CDC Redberry |
→˓KP:GERM58 | | 3683 | f |
→˓Variety

27907 | | 4 | CDC Redberry 454 Extraction |
→˓CDC_Redberry_454 | | 3630 | f | DNA

psql=# SELECT t.*, cvt.name as type_name FROM chado.stock_relationship t LEFT JOIN
→˓chado.cvterm cvt ON cvt.cvterm_id=t.type_id WHERE t.subject_id IN (58, 27907) AND
→˓cvt.name='is_extracted_from';
stock_relationship_id | subject_id | object_id | type_id | value | rank | type_
→˓name
-----------------------+------------+-----------+---------+-------+------+------------
→˓-------

43301 | 27907 | 58 | 3712 | | 0 | is_
→˓extracted_from
(1 row)

5.2.4 Materialized Views

The following queries show the materialized views created by this module and provide an example of what they
should contain. Notice that the variant/markers being demonstrated are located in multiple places on the genotype
which explains the multiple records in mview_ndg_lens_variants. If your variants amplify unique regions then there
will only be one location per variant in this table.

psql=# SELECT * FROM chado.mview_ndg_lens_calls WHERE variant_id=327991 LIMIT 10;
variant_id | marker_id | marker_name | marker_type
→˓ | stock_id | stock_name | germplasm_id | germplasm_name |
→˓project_id | genotype_id | allele_call | meta_data | ndg_call_id
------------+-----------+---------------------------------------+---------------------
→˓-------+----------+-----------------------------+--------------+----------------+---
→˓---------+-------------+-------------+-----------+-------------

327991 | 372934 | LcC09269p298 454 Sequencing | 454 Sequencing
→˓ | 27908 | 964a-46 454 Extraction | 6755 | 964a-46 |
→˓ 3 | 2625649 | C | | 1223711

(continues on next page)

5.2. Example Database 37

ND Genotypes Documentation, Release 7.x-2.0-beta1

(continued from previous page)

327991 | 372934 | LcC09269p298 454 Sequencing | 454 Sequencing
→˓ | 27911 | ILL 8006 454 Extraction | 18809 | ILL 8006 |
→˓ 3 | 2625649 | C | | 1223712

327991 | 372934 | LcC09269p298 454 Sequencing | 454 Sequencing
→˓ | 27907 | CDC Redberry 454 Extraction | 58 | CDC Redberry |
→˓ 3 | 2625650 | G | | 1309137

327991 | 372934 | LcC09269p298 454 Sequencing | 454 Sequencing
→˓ | 27916 | PI 320937 454 Extraction | 7832 | PI 320937 |
→˓ 3 | 2625650 | G | | 1347692

327991 | 372934 | LcC09269p298 454 Sequencing | 454 Sequencing
→˓ | 27917 | L01-827A 454 Extraction | 9727 | L01-827A |
→˓ 3 | 2625650 | G | | 1347693

327991 | 392501 | LcC09269p298 Lc1536 Golden Gate Assay | Illumina Golden
→˓Gate Assay | 28285 | 1294M-23 Extraction | 9420 | 1294M-23
→˓| 36 | 2625651 | GG | | 1357149

327991 | 392501 | LcC09269p298 Lc1536 Golden Gate Assay | Illumina Golden
→˓Gate Assay | 28286 | 2670B Extraction | 9975 | 2670B
→˓| 36 | 2625651 | GG | | 1357418

327991 | 392501 | LcC09269p298 Lc1536 Golden Gate Assay | Illumina Golden
→˓Gate Assay | 28288 | 964a-46 Extraction | 6755 | 964a-46
→˓| 36 | 2625651 | GG | | 1357955

327991 | 392501 | LcC09269p298 Lc1536 Golden Gate Assay | Illumina Golden
→˓Gate Assay | 28289 | Giftgi Extraction | 9771 | Giftgi
→˓| 36 | 2625651 | GG | | 1358196

327991 | 392501 | LcC09269p298 Lc1536 Golden Gate Assay | Illumina Golden
→˓Gate Assay | 28290 | ILL 1704 Extraction | 8111 | ILL 1704
→˓| 36 | 2625651 | GG | | 1358495
(10 rows)

psql=# SELECT * FROM chado.mview_ndg_lens_variants WHERE variant_id=327991;
variant_id | variant_name | variant_type | srcfeature_id | srcfeature_name | fmin
→˓ | fmax | meta_data
→˓| ndg_variants_id
------------+--------------+--------------+---------------+-----------------+---------
→˓--+-----------+--
→˓+-----------------

327991 | LcC09269p298 | SNP | 295264 | LcRBContig09269 |
→˓297 | 298 | {"strand": null, "featureloc_id": 3260896, "variant_type_id": 796}
→˓ | 396318

327991 | LcC09269p298 | SNP | 3400407 | LcChr1 |
→˓501710 | 501711 | {"strand": -1, "featureloc_id": 4562011, "variant_type_id":
→˓796} | 396319

327991 | LcC09269p298 | SNP | 3400411 | LcChr5 |
→˓250136623 | 250136624 | {"strand": -1, "featureloc_id": 4562010, "variant_type_id":
→˓796} | 396320

327991 | LcC09269p298 | SNP | 3400411 | LcChr5 |
→˓250519947 | 250519948 | {"strand": -1, "featureloc_id": 4562009, "variant_type_id":
→˓796} | 396321
(4 rows)

38 Chapter 5. Data Storage

CHAPTER 6

Contributing

We’re excited to work with you! Post in the issues queue with any questions, feature requests, or proposals.

6.1 Automated Testing

This module uses Tripal Test Suite. To run tests locally:

cd MODULE_ROOT
composer up
./vendor/bin/phpunit

This will run all tests associated with the ND Genotypes extension module. If you are running into issues, this is a
good way to rule out a system incompatibility.

Warning: It is highly suggested you ONLY RUN TESTS ON DEVELOPMENT SITES. We have done our best
to ensure that our tests clean up after themselves; however, we do not guarantee there will be no changes to your
database.

6.2 Manual Testing (Demonstration)

We have provided a Tripal Test Suite Database Seeder to make development and demonstration of functionality easier.
To populate your development database with fake phenotypic data:

1. Install this module according to the instructions in the administration guide.

2. Create an organism (genus: Tripalus; species: databasica)

3. Run the database seeder to populate the database using the following commands:

39

https://tripaltestsuite.readthedocs.io/en/latest/installation.html#joining-an-existing-project
https://tripaltestsuite.readthedocs.io/en/latest/db-seeders.html

ND Genotypes Documentation, Release 7.x-2.0-beta1

cd MODULE_ROOT
composer up
./vendor/bin/tripaltest db:seed GenotypeDatasetSeeder

4. Populate the materialized views by going to Administration » Tripal » Extensions » Natural Diversity Genotypes
» Sync and Choose “Tripalus” then click the “Sync” button. Finally run the Tripal jobs submitted.

5. To play with the genotype matrix go to [your drupal site]/chado/genotype/[genus]. You can
see what germplasm are available by typing a single random letter in the autocomplete box.

6. To play with marker/variant pages, go to Administration » Content » Tripal Content » Publish Tripal Content
and then select “Genetic Marker”/”Sequence Variant” and publish to create pages. Remember to run the tripal
jobs submitted on the command-line using Drush trp-job-run.

Warning: NEVER run database seeders on production sites. They will insert fictitious data into Chado.

Warning: If ND Genotypes fields are not automatically attached to the genetic marker and sequence variant
content types, go to the “Manage Fields” page for each and click “Find new fields”. Also, go to the “Manage
Display” page and ensure they are not hidden.

40 Chapter 6. Contributing

	Features
	Genotype Matrix
	Marker/Variant Genotype Summary Fields
	Marker/Variant Flanking Sequence Field
	Genotype Matrix Quick Link

	Installation
	Quickstart
	Dependencies
	Installation

	Configuration
	Set Controlled Vocabulary Terms
	Add Genotype Summaries to Variant/Marker Pages
	Set Preferred Allele Colours (Optional)

	Use Cases
	Find a variant in a trait-implicated region

	Data Storage
	Chado Schema and Extensions
	Example Database

	Contributing
	Automated Testing
	Manual Testing (Demonstration)

